
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Coping with shared mutable state in a
typestate-oriented concurrent language

ABSTRACT
In this PhD thesis plan, we propose to design a type system for a
core object and typestate-oriented language to reason on shared
mutable state while ensuring memory and thread-safety, protocol
compliance (that method calls are performed in order) and com-
pletion (if the program terminates, all protocols are finished and
resources are freed). We plan to address this by implementing a
type system framework parametric over separation algebras
allowing one to distinguish between thread-local and thread-shared
resources, and between affine and linear ones.

1 CONTEXT
Users expect applications to be well-behaved and efficient. However,
all sorts of bugs appear in software. Issues compromising memory-
safety, like null dereferencing [17], dangling pointers, or memory
leaks, lead to crashes. Since concurrency is intrinsic to modern soft-
ware and hardware, issues affecting thread-safety, like data-races
or race-conditions [36], lead to subtle bugs [29]. Protocol-related
bugs [4, 38], like executing methods out of order, or forgetting to
call a finalizer method, result in programs that fail to follow the
intended behaviour, leading to business logic issues or even security
ones [11–13, 28]. For efficiency, modern software relies heavily on
imperative and concurrent language features, exploiting shared
mutable state. However, reasoning about these programs is very
difficult [26, 29]. Thus, software verification is crucial to ensure
programs are correct with respect to their intended behaviour [18].

Most static verification techniques are based either on type sys-
tems or deductive logics. Type systems are widely used in industrial
languages to avoid data-errors. However, most do not prevent criti-
cal bugs, like null dereferencing, such as C and Java. More modern
languages have adopted richer type systems that avoid more errors:
Kotlin distinguishes nullable from non-nullable types; Rust’s own-
ership model guarantees memory and thread-safety. Nonetheless,
mainstream languages still do not enforce relevant properties, such
as guaranteeing that object protocols are followed and completed.
Behavioural type disciplines, like typestates [14, 16, 40, 41] and ses-
sion types [19, 20, 42], have been proposed and thoroughly studied
to fill this gap, but are not used in the industry. Deductive reason-
ing is not integrated in compilers; nonetheless, it is used to verify
properties that cannot be expressed in common type systems, like
functional correctness. For instance, the VeriFast tool verifies C and
Java code given separation logic specifications [22].

2 PROBLEMS
In the literature, there are many approaches to static program veri-
fication. However, each solution is usually focused on a particular
issue and is limited to a fixed set of features. So, there is no unified
systemwhich combines the qualities of several approaches while ac-
counting formodern features. For example, dynamic thread creation
is usually not accounted for in high-level languages, while parallel
composition, which is not used in modern languages, is subject of

more research, as Dodds et al. [15] point out. Moreover, there are
useful disciplines in the literature that are not then implemented in
mainstream programming languages, such as behavioural types [1].

There is also a tension between expressiveness and proof ease.
Type systems have a lower annotation effort than deductive log-
ics but are usually less expressive. One may need unnecessary
workarounds to show that the code is correct, like rewriting it in
an unnatural way, using defensive programming, or using locks in
sequential code. In the worst case, the code might not be accepted.
Deductive logics are more expressive but may require challenging
proofs or cumbersome encodings [33]: the developer wastes time,
and the correctness proof intuition gets lost in the encoding.

Thus, programming languages should ideally provide: (1) a uni-
fied framework to check safety of code supporting several modern
features – connecting what exists in the literature with what is used
in the industry; (2) a balance between expressiveness and proof
ease, exploiting low specification efforts and good abstractions –
improving developer experience. We consider that a decidable type
system can provide the right balance since the programmer would
not be required to provide proofs. However, a unified framework to
deal with protocols and shared mutable state in type systems is
still lacking and there are problems that still need to be addressed.
In particular, we identify three concrete unsolved issues:

(1) Sharing patterns are severely limited: either sharing is for-
bidden (by enforcing linearity1), or limited to a fixed set of
capabilities, or a certain ownership discipline, preventing
circular data structures from being implemented;

(2) Thread-local data and thread-shared data are not differenti-
ated, forcing the use of locks even in sequential code;

(3) Protocol completion is supported only in linear settings.
In the presence of sharing, affinity2 has been preferred,
leading to memory leaks or uncompleted protocols.

To highlight these points, please consider, for example purposes,
the JavaScript asynchronous code [27, 34, 39] in List. 1 featuring a
producer and consumer. Both share a queue (implemented as an
linked list) containing stateful objects with protocol (line 1). The
producer performs a task and adds the result to the queue (lines
4-5). The consumer keeps taking values while there are objects to
consume or while a producer is requesting the queue for future
additions (lines 10-11). Due to the interleaving of actions and the
sharing pattern exhibited, which relies on a complex cooperation
between the producer and consumer (i.e. the producer adds items
expecting the consumer to receive them all and complete their pro-
tocols), verifying that the protocols are respected and completed
is not trivial. If the producer requested the queue in line 5 instead
of line 16, it would be possible for the consumer to execute first,
observe that the queue was empty and unused, and terminate im-
mediately. After the producer finished, the whole program would
terminate with the queue having unconsumed objects.

1Which only allows one reference to data.
2Which allows data to not be used (i.e. dropped).

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Listing 1: Asynchronous producer and consumer
1 const queue = new Queue ();

2
3 async function producer () {

4 const data = await otherTask1 ();

5 queue.add(data);

6 queue.unuse ();

7 }

8
9 async function consumer () {

10 while (queue.inUse ()) {

11 const data = await queue.take ();

12 await otherTask2(data);

13 }

14 }

15 // Claim use before starting the consumer

16 queue.use();

17 await Promise.all([producer(), consumer ()]);

Issue 1 prevents the verification of the queue and controlling the
states of the objects [33]. Some approaches might be able to tackle
this, but at the cost of either not having a fine-grained resource
control, necessary to ensure protocol completion (Issue 3), or by
requiring the use of deductive reasoning. Moreover, as explained
before, the sharing pattern relies on a complex cooperation between
the producer and consumer which is difficult to model while en-
suring protocol completion. How to tame mutable shared state has
been usually studied either in sequential settings or multi-threaded
programs. For this reason, unless the program is fully sequential, it
is usually assumed that data may be shared between threads, forc-
ing one to use some form of synchronization to access it (Issue 2).
Finally, as far as we can tell, principled techniques to better handle
mutable shared state in single-threaded asynchronous settings have
not been proposed (where the interleaving of asynchronous calls
leads to concurrency without parallelism3 - thanks to the “run to
completion” scheduling of event loops [10, 31, 34, 39, 43]).

The borrowing rules of Rust [44] do not support this scenario.
One would likely need to use locks to control the access to the
queue and reference counting to know when to drop the queue,
moving the verification to run time. Even with a library4, the types
are fixed so there is no notion of protocol. CLASS [37] does not
support fine-grained resource control or linear state in cells. Access
permissions of Plural [5] are not expressive enough to model this
kind of cooperation. Rely-guarantee protocols [30] could be used
to model the example, but locks are required in concurrent settings
and protocol completion is not guaranteed. The aforementioned
issues have been addressed in some settings, but still only partially:

(1) With the proliferation of solutions to tackle issues of expres-
siveness, each one with their own advantages and disadvan-
tages, a unified framework is desired. Iris, a framework for
higher-order concurrent separation logic [24], allows users
to implement their own logical (ghost) resources (as par-
tial commutative monoids), and has been successfully used
to derive and implement many different formal systems.
Although Iris is an unifying and expressive framework,
deductive reasoning and expertise are required.

3As Cutsem et al. [10] point out, “the use of event loops avoids low-level data races
that are inherent in the shared-memory multithreading paradigm”.
4https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html

(2) There is some work on capabilities which distinguish be-
tween thread-local from thread-shared data [8, 9, 45], but
the set of available capabilities is fixed and there are limita-
tions to how data may be transferred between threads. In
Iris, it is possible to encode “thread-local invariants” which
can be opened non-atomically [21], but doing the encoding
is non-trivial and requires expert users.

(3) Recent logics have preferred to use affine resources, such
as Iris, which do not allow the precise tracking of resources.
However, there is now some work extending Iris with linear
resources [23], or even both kinds [7, 25]. Unfortunately,
this is only available in the deductive logics realm.

3 RESEARCH STATEMENT
Our main objective for the PhD thesis is to:

Design a typed core OO language supporting shared
mutable state and objects protocols, with memory and
thread-safety, protocol compliance and completion.

The core language should provide modern features, support pro-
tocols, and reason about shared mutable state. Safe programs
should be memory-safe (i.e. no null dereferencing, dangling point-
ers or memory leaks) and thread-safe (i.e. no low-level data-races).
Moreover, safe programs should respect all objects protocols (proto-
col compliance) and ensure that upon termination all protocols are
finished (protocol completion). The former is crucial to ensure that
methods are executed in the right sequence. The latter is critical
to guarantee that necessary method calls are not forgotten and
resources are freed. To fulfil this goal, we plan the following.

Formalise the language semantics supporting modern fea-
tures, like aliasing, mutable state, locks, dynamic thread creation
(with fork and join), and asynchronous code (enabled by each
thread having an event loop, inspired by AmbientTalk [10] and
JavaScript [34, 39]), in the Coq proof assistant [3].

Develop a type system framework parametric over separation
algebras [6], allowing more expressive ways to reason about shared
data. Taking inspiration from Iris [24], we want to ease the creation
of new type systems, without requiring one to repeat soundness
proofs: one just needs to instantiate the framework with the right
sharing capabilities. We plan to mechanise the solution in the Coq
proof assistant [3], using computer-aided proofs to establish the
soundness of the approach.With this type system based approach, we
believe we provide a much needed balance between expressiveness
and ease of use while providing an unifying framework from which
more works can be developed, to avoid adding to “the next 700
type systems” [35]. The technical novelties would include the ability
to distinguish between thread-local and thread-shared resources,
and between affine and linear ones. Moreover, we will develop a
decidable algorithm from the rules of the resulting type system.

Evaluate the approach by applying the principles in main-
stream languages, like TypeScript or Java. JaTyC [2, 32], a Java
typestate-checking tool, has been our test ambient. It statically
ensures memory-safety, protocol compliance and completion. How-
ever, objects must be used linearly. To support flexible sharing, we
also plan to develop an integration of typestates with particular sep-
aration algebras, such as access permissions [5] and rely-guarantee
protocols [30], thus going beyond the state of the art.

2

https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Coping with shared mutable state in a typestate-oriented concurrent language

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Davide Ancona, Viviana Bono,Mario Bravetti, Joana Campos, Giuseppe Castagna,

Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,
Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,
Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and
Nobuko Yoshida. 2016. Behavioral Types in Programming Languages. Found.
Trends Program. Lang. 3, 2-3 (2016), 95–230. https://doi.org/10.1561/2500000031

[2] Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara.
2022. A Java typestate checker supporting inheritance. Sci. Comput. Program.
221 (2022), 102844. https://doi.org/10.1016/J.SCICO.2022.102844

[3] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe
Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, et al. 1997. The Coq proof assistant reference manual: Version 6.1.

[4] Nels E Beckman, Duri Kim, and Jonathan Aldrich. 2011. An Empirical Study of
Object Protocols in the Wild. In Proc. of European Conference on Object-Oriented
Programming (ECOOP) (Lecture Notes in Computer Science, Vol. 6813). Springer,
United Kingdom, 2–26. https://doi.org/10.1007/978-3-642-22655-7_2

[5] Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of
aliased objects. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2007, Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele
Jr. (Eds.). ACM, 301–320. https://doi.org/10.1145/1297027.1297050

[6] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action
and Abstract Separation Logic. In 22nd IEEE Symposium on Logic in Computer
Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings. IEEE Computer
Society, 366–378. https://doi.org/10.1109/LICS.2007.30

[7] Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. 2017. Bringing Order
to the Separation Logic Jungle. In Programming Languages and Systems - 15th
Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017, Proceed-
ings (Lecture Notes in Computer Science, Vol. 10695), Bor-Yuh Evan Chang (Ed.).
Springer, 190–211. https://doi.org/10.1007/978-3-319-71237-6_10

[8] Elias Castegren and Tobias Wrigstad. 2016. Reference Capabilities for Concur-
rency Control. In 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shriram Krishna-
murthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 5:1–5:26. https://doi.org/10.4230/LIPICS.ECOOP.2016.5

[9] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.
2015. Deny capabilities for safe, fast actors. In Proceedings of the 5th International
Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! 2015, Pittsburgh, PA, USA, October 26, 2015, Elisa Gonzalez Boix, Philipp
Haller, Alessandro Ricci, and Carlos A. Varela (Eds.). ACM, 1–12. https://doi.
org/10.1145/2824815.2824816

[10] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide
Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. 2014. Ambi-
entTalk: programming responsive mobile peer-to-peer applications with actors.
Comput. Lang. Syst. Struct. 40, 3-4 (2014), 112–136. https://doi.org/10.1016/J.CL.
2014.05.002

[11] CWE - Common Weakness Enumeration. 2023. CWE-306: Missing Authenti-
cation for Critical Function. https://cwe.mitre.org/data/definitions/306.html
Accessed: 2024-01-22.

[12] CWE - Common Weakness Enumeration. 2023. CWE-754: Improper Check for
Unusual or Exceptional Conditions. https://cwe.mitre.org/data/definitions/754.
html Accessed: 2024-01-22.

[13] CWE - Common Weakness Enumeration. 2023. CWE-841: Improper Enforce-
ment of Behavioral Workflow. https://cwe.mitre.org/data/definitions/841.html
Accessed: 2024-01-22.

[14] Robert DeLine and Manuel Fähndrich. 2004. Typestates for Objects. In ECOOP
2004 - Object-Oriented Programming, 18th European Conference, Oslo, Norway,
June 14-18, 2004, Proceedings (Lecture Notes in Computer Science, Vol. 3086), Martin
Odersky (Ed.). Springer, 465–490. https://doi.org/10.1007/978-3-540-24851-4_21

[15] Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. 2009.
Deny-Guarantee Reasoning. In Programming Languages and Systems, 18th Euro-
pean Symposium on Programming, ESOP 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March
22-29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5502), Giuseppe
Castagna (Ed.). Springer, 363–377. https://doi.org/10.1007/978-3-642-00590-9_26

[16] Ronald Garcia, Éric Tanter, RogerWolff, and Jonathan Aldrich. 2014. Foundations
of Typestate-Oriented Programming. ACMTrans. Program. Lang. Syst. 36, 4 (2014),
12:1–12:44. https://doi.org/10.1145/2629609

[17] Tony Hoare. 2009. Null References: The Billion Dollar Mistake. https://tinyurl.
com/eyipowm4 Presentation at QCon London.

[18] Tony Hoare, Jayadev Misra, Gary T. Leavens, and Natarajan Shankar. 2021. The
Verified Software Initiative: AManifesto. In Theories of Programming: The Life and
Works of Tony Hoare, Cliff B. Jones and Jayadev Misra (Eds.). ACM Books, Vol. 39.
ACM / Morgan & Claypool, 81–92. https://doi.org/10.1145/3477355.3477361

[19] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th Interna-
tional Conference on Concurrency Theory, Hildesheim, Germany, August 23-26,

1993, Proceedings (Lecture Notes in Computer Science, Vol. 715), Eike Best (Ed.).
Springer, 509–523. https://doi.org/10.1007/3-540-57208-2_35

[20] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Lan-
guage Primitives and Type Discipline for Structured Communication-Based
Programming. In Programming Languages and Systems - ESOP’98, 7th European
Symposium on Programming, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April
4, 1998, Proceedings (Lecture Notes in Computer Science, Vol. 1381), Chris Hankin
(Ed.). Springer, 122–138. https://doi.org/10.1007/BFB0053567

[21] Iris Project. 2023. The Iris 4.1 Reference. https://plv.mpi-sws.org/iris/appendix-
4.1.pdf Accessed: 2024-01-15.

[22] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. 2011. VeriFast: A Powerful, Sound, Predictable, Fast Verifier
for C and Java. In NASA Formal Methods - Third International Symposium, NFM
2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings (Lecture Notes in Com-
puter Science, Vol. 6617), Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J.
Holzmann, and Rajeev Joshi (Eds.). Springer, 41–55. https://doi.org/10.1007/978-
3-642-20398-5_4

[23] Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2024. Deadlock-
Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order
Message Passing. Proceedings of the ACM on Programming Languages 8, POPL
(2024), 1385–1417.

[24] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

[25] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver
Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: a
general, extensible modal framework for interactive proofs in separation logic.
Proc. ACM Program. Lang. 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/
3236772

[26] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössen-
böck. 2018. A Study of Concurrency Bugs and Advanced Development Support
for Actor-based Programs. In Programming with Actors - State-of-the-Art and
Research Perspectives, Alessandro Ricci and Philipp Haller (Eds.). Lecture Notes
in Computer Science, Vol. 10789. Springer, 155–185. https://doi.org/10.1007/978-
3-030-00302-9_6

[27] Matthew C. Loring, Mark Marron, and Daan Leijen. 2017. Semantics of asyn-
chronous JavaScript. In Proceedings of the 13th ACM SIGPLAN International
Symposium on Dynamic Languages, Vancouver, BC, Canada, October 23 - 27, 2017,
Davide Ancona (Ed.). ACM, 51–62. https://doi.org/10.1145/3133841.3133846

[28] Gavin Lowe. 1996. Breaking and Fixing the Needham-Schroeder Public-Key
Protocol Using FDR. In Tools and Algorithms for Construction and Analysis of
Systems, Second InternationalWorkshop, TACAS ’96, Passau, Germany,March 27-29,
1996, Proceedings (Lecture Notes in Computer Science, Vol. 1055), Tiziana Margaria
and Bernhard Steffen (Eds.). Springer, 147–166. https://doi.org/10.1007/3-540-
61042-1_43

[29] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA,
March 1-5, 2008, Susan J. Eggers and James R. Larus (Eds.). ACM, 329–339. https:
//doi.org/10.1145/1346281.1346323

[30] Filipe Militão, Jonathan Aldrich, and Luís Caires. 2014. Rely-Guarantee Pro-
tocols. In ECOOP 2014 - Object-Oriented Programming - 28th European Confer-
ence, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings (Lecture Notes in
Computer Science, Vol. 8586), Richard E. Jones (Ed.). Springer, 334–359. https:
//doi.org/10.1007/978-3-662-44202-9_14

[31] Mark S. Miller, Eric Dean Tribble, and Jonathan S. Shapiro. 2005. Concurrency
Among Strangers. In TGC (Lecture Notes in Computer Science, Vol. 3705). Springer,
195–229.

[32] João Mota, Marco Giunti, and António Ravara. 2021. Java Typestate Checker. In
Coordination Models and Languages - 23rd IFIP WG 6.1 International Conference,
COORDINATION 2021, Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-
18, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12717), Ferruccio
Damiani and Ornela Dardha (Eds.). Springer, 121–133. https://doi.org/10.1007/
978-3-030-78142-2_8

[33] João Mota, Marco Giunti, and António Ravara. 2023. On Using VeriFast, VerCors,
Plural, and KeY to Check Object Usage (Experience Paper). In 37th European
Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle,
Washington, United States (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 40:1–40:29. https:
//doi.org/10.4230/LIPICS.ECOOP.2023.40

[34] Mozilla. 2024. The event loop - JavaScript | MDN. https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Event_loop Accessed: 2024-02-29.

[35] Matthew J. Parkinson. 2010. The Next 700 Separation Logics - (Invited Paper).
In Verified Software: Theories, Tools, Experiments, Third International Conference,

3

https://doi.org/10.1561/2500000031
https://doi.org/10.1016/J.SCICO.2022.102844
https://doi.org/10.1007/978-3-642-22655-7_2
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-319-71237-6_10
https://doi.org/10.4230/LIPICS.ECOOP.2016.5
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1016/J.CL.2014.05.002
https://doi.org/10.1016/J.CL.2014.05.002
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/754.html
https://cwe.mitre.org/data/definitions/841.html
https://doi.org/10.1007/978-3-540-24851-4_21
https://doi.org/10.1007/978-3-642-00590-9_26
https://doi.org/10.1145/2629609
https://tinyurl.com/eyipowm4
https://tinyurl.com/eyipowm4
https://doi.org/10.1145/3477355.3477361
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFB0053567
https://plv.mpi-sws.org/iris/appendix-4.1.pdf
https://plv.mpi-sws.org/iris/appendix-4.1.pdf
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-030-00302-9_6
https://doi.org/10.1007/978-3-030-00302-9_6
https://doi.org/10.1145/3133841.3133846
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1007/978-3-662-44202-9_14
https://doi.org/10.1007/978-3-662-44202-9_14
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.1007/978-3-030-78142-2_8
https://doi.org/10.4230/LIPICS.ECOOP.2023.40
https://doi.org/10.4230/LIPICS.ECOOP.2023.40
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

VSTTE 2010, Edinburgh, UK, August 16-19, 2010. Proceedings (Lecture Notes in
Computer Science, Vol. 6217), Gary T. Leavens, Peter W. O’Hearn, and Sriram K.
Rajamani (Eds.). Springer, 169–182. https://doi.org/10.1007/978-3-642-15057-
9_12

[36] Kevin Poulsen. 2004. Tracking the blackout bug. Securityfocus.com. https://web.
archive.org/web/20110610163731/http://www.securityfocus.com/news/8412 Re-
trieved June 11, 2010.

[37] Pedro Rocha and Luís Caires. 2023. Safe Session-Based Concurrency with Shared
Linear State. In Programming Languages and Systems - 32nd European Symposium
on Programming, ESOP 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2023, France, 2023, Proceedings (Lecture
Notes in Computer Science, Vol. 13990), Thomas Wies (Ed.). Springer, 421–450.
https://doi.org/10.1007/978-3-031-30044-8_16

[38] Syeda Khairunnesa Samantha, Shibbir Ahmed, Sayem Mohammad Imtiaz,
Hridesh Rajan, and Gary T. Leavens. 2023. What kinds of contracts do ML
APIs need? Empir. Softw. Eng. 28, 6 (2023), 142. https://doi.org/10.1007/S10664-
023-10320-Z

[39] Thodoris Sotiropoulos and Benjamin Livshits. 2019. Static Analysis for Asyn-
chronous JavaScript Programs. In 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom (LIPIcs,
Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 8:1–8:30. https://doi.org/10.4230/LIPICS.ECOOP.2019.8

[40] Robert E. Strom. 1983. Mechanisms for Compile-Time Enforcement of Security.
In Conference Record of the Tenth Annual ACM Symposium on Principles of Pro-
gramming Languages, Austin, Texas, USA, January 1983, John R. Wright, Larry
Landweber, Alan J. Demers, and Tim Teitelbaum (Eds.). ACM Press, 276–284.
https://doi.org/10.1145/567067.567093

[41] Robert E. Strom and Shaula Yemini. 1986. Typestate: A Programming Language
Concept for Enhancing Software Reliability. IEEE Trans. Software Eng. 12, 1
(1986), 157–171. https://doi.org/10.1109/TSE.1986.6312929

[42] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An Interaction-based
Language and its Typing System. In PARLE ’94: Parallel Architectures and Lan-
guages Europe, 6th International PARLE Conference, Athens, Greece, July 4-8, 1994,
Proceedings (Lecture Notes in Computer Science, Vol. 817), Constantine Halat-
sis, Dimitris G. Maritsas, George Philokyprou, and Sergios Theodoridis (Eds.).
Springer, 398–413. https://doi.org/10.1007/3-540-58184-7_118

[43] Andrew S. Tanenbaum. 2014. Modern operating systems, 4rd Edition. Pearson
Prentice-Hall.

[44] The Rust Team. 2017. Rust Programming Language. https://www.rust-lang.org/
Accessed: 2023-12-15.

[45] Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek. 2009. Loci:
Simple Thread-Locality for Java. In ECOOP 2009 - Object-Oriented Programming,
23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings (Lecture Notes
in Computer Science, Vol. 5653), Sophia Drossopoulou (Ed.). Springer, 445–469.
https://doi.org/10.1007/978-3-642-03013-0_21

4

https://doi.org/10.1007/978-3-642-15057-9_12
https://doi.org/10.1007/978-3-642-15057-9_12
https://web.archive.org/web/20110610163731/http://www.securityfocus.com/news/8412
https://web.archive.org/web/20110610163731/http://www.securityfocus.com/news/8412
https://doi.org/10.1007/978-3-031-30044-8_16
https://doi.org/10.1007/S10664-023-10320-Z
https://doi.org/10.1007/S10664-023-10320-Z
https://doi.org/10.4230/LIPICS.ECOOP.2019.8
https://doi.org/10.1145/567067.567093
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/3-540-58184-7_118
https://www.rust-lang.org/
https://doi.org/10.1007/978-3-642-03013-0_21

	1 Context
	2 Problems
	3 Research Statement
	References

