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Coping with shared mutable state in a
typestate-oriented concurrent language

ABSTRACT
In this PhD thesis plan, we propose to design a type system for a
core object and typestate-oriented language to reason on shared
mutable state while ensuring memory and thread-safety, protocol
compliance (that method calls are performed in order) and com-
pletion (if the program terminates, all protocols are finished and
resources are freed). We plan to address this by implementing a
type system framework parametric over separation algebras
allowing one to distinguish between thread-local and thread-shared
resources, and between affine and linear ones.

1 CONTEXT
Users expect applications to be well-behaved and efficient. However,
all sorts of bugs appear in software. Issues compromising memory-
safety, like null dereferencing [17], dangling pointers, or memory
leaks, lead to crashes. Since concurrency is intrinsic to modern soft-
ware and hardware, issues affecting thread-safety, like data-races
or race-conditions [36], lead to subtle bugs [29]. Protocol-related
bugs [4, 38], like executing methods out of order, or forgetting to
call a finalizer method, result in programs that fail to follow the
intended behaviour, leading to business logic issues or even security
ones [11–13, 28]. For efficiency, modern software relies heavily on
imperative and concurrent language features, exploiting shared
mutable state. However, reasoning about these programs is very
difficult [26, 29]. Thus, software verification is crucial to ensure
programs are correct with respect to their intended behaviour [18].

Most static verification techniques are based either on type sys-
tems or deductive logics. Type systems are widely used in industrial
languages to avoid data-errors. However, most do not prevent criti-
cal bugs, like null dereferencing, such as C and Java. More modern
languages have adopted richer type systems that avoid more errors:
Kotlin distinguishes nullable from non-nullable types; Rust’s own-
ership model guarantees memory and thread-safety. Nonetheless,
mainstream languages still do not enforce relevant properties, such
as guaranteeing that object protocols are followed and completed.
Behavioural type disciplines, like typestates [14, 16, 40, 41] and ses-
sion types [19, 20, 42], have been proposed and thoroughly studied
to fill this gap, but are not used in the industry. Deductive reason-
ing is not integrated in compilers; nonetheless, it is used to verify
properties that cannot be expressed in common type systems, like
functional correctness. For instance, the VeriFast tool verifies C and
Java code given separation logic specifications [22].

2 PROBLEMS
In the literature, there are many approaches to static program veri-
fication. However, each solution is usually focused on a particular
issue and is limited to a fixed set of features. So, there is no unified
systemwhich combines the qualities of several approaches while ac-
counting formodern features. For example, dynamic thread creation
is usually not accounted for in high-level languages, while parallel
composition, which is not used in modern languages, is subject of

more research, as Dodds et al. [15] point out. Moreover, there are
useful disciplines in the literature that are not then implemented in
mainstream programming languages, such as behavioural types [1].

There is also a tension between expressiveness and proof ease.
Type systems have a lower annotation effort than deductive log-
ics but are usually less expressive. One may need unnecessary
workarounds to show that the code is correct, like rewriting it in
an unnatural way, using defensive programming, or using locks in
sequential code. In the worst case, the code might not be accepted.
Deductive logics are more expressive but may require challenging
proofs or cumbersome encodings [33]: the developer wastes time,
and the correctness proof intuition gets lost in the encoding.

Thus, programming languages should ideally provide: (1) a uni-
fied framework to check safety of code supporting several modern
features – connecting what exists in the literature with what is used
in the industry; (2) a balance between expressiveness and proof
ease, exploiting low specification efforts and good abstractions –
improving developer experience. We consider that a decidable type
system can provide the right balance since the programmer would
not be required to provide proofs. However, a unified framework to
deal with protocols and shared mutable state in type systems is
still lacking and there are problems that still need to be addressed.
In particular, we identify three concrete unsolved issues:

(1) Sharing patterns are severely limited: either sharing is for-
bidden (by enforcing linearity1), or limited to a fixed set of
capabilities, or a certain ownership discipline, preventing
circular data structures from being implemented;

(2) Thread-local data and thread-shared data are not differenti-
ated, forcing the use of locks even in sequential code;

(3) Protocol completion is supported only in linear settings.
In the presence of sharing, affinity2 has been preferred,
leading to memory leaks or uncompleted protocols.

To highlight these points, please consider, for example purposes,
the JavaScript asynchronous code [27, 34, 39] in List. 1 featuring a
producer and consumer. Both share a queue (implemented as an
linked list) containing stateful objects with protocol (line 1). The
producer performs a task and adds the result to the queue (lines
4-5). The consumer keeps taking values while there are objects to
consume or while a producer is requesting the queue for future
additions (lines 10-11). Due to the interleaving of actions and the
sharing pattern exhibited, which relies on a complex cooperation
between the producer and consumer (i.e. the producer adds items
expecting the consumer to receive them all and complete their pro-
tocols), verifying that the protocols are respected and completed
is not trivial. If the producer requested the queue in line 5 instead
of line 16, it would be possible for the consumer to execute first,
observe that the queue was empty and unused, and terminate im-
mediately. After the producer finished, the whole program would
terminate with the queue having unconsumed objects.

1Which only allows one reference to data.
2Which allows data to not be used (i.e. dropped).
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Listing 1: Asynchronous producer and consumer
1 const queue = new Queue ();

2
3 async function producer () {

4 const data = await otherTask1 ();

5 queue.add(data);

6 queue.unuse ();

7 }

8
9 async function consumer () {

10 while (queue.inUse ()) {

11 const data = await queue.take ();

12 await otherTask2(data);

13 }

14 }

15 // Claim use before starting the consumer

16 queue.use();

17 await Promise.all([ producer(), consumer ()]);

Issue 1 prevents the verification of the queue and controlling the
states of the objects [33]. Some approaches might be able to tackle
this, but at the cost of either not having a fine-grained resource
control, necessary to ensure protocol completion (Issue 3), or by
requiring the use of deductive reasoning. Moreover, as explained
before, the sharing pattern relies on a complex cooperation between
the producer and consumer which is difficult to model while en-
suring protocol completion. How to tame mutable shared state has
been usually studied either in sequential settings or multi-threaded
programs. For this reason, unless the program is fully sequential, it
is usually assumed that data may be shared between threads, forc-
ing one to use some form of synchronization to access it (Issue 2).
Finally, as far as we can tell, principled techniques to better handle
mutable shared state in single-threaded asynchronous settings have
not been proposed (where the interleaving of asynchronous calls
leads to concurrency without parallelism3 - thanks to the “run to
completion” scheduling of event loops [10, 31, 34, 39, 43]).

The borrowing rules of Rust [44] do not support this scenario.
One would likely need to use locks to control the access to the
queue and reference counting to know when to drop the queue,
moving the verification to run time. Even with a library4, the types
are fixed so there is no notion of protocol. CLASS [37] does not
support fine-grained resource control or linear state in cells. Access
permissions of Plural [5] are not expressive enough to model this
kind of cooperation. Rely-guarantee protocols [30] could be used
to model the example, but locks are required in concurrent settings
and protocol completion is not guaranteed. The aforementioned
issues have been addressed in some settings, but still only partially:

(1) With the proliferation of solutions to tackle issues of expres-
siveness, each one with their own advantages and disadvan-
tages, a unified framework is desired. Iris, a framework for
higher-order concurrent separation logic [24], allows users
to implement their own logical (ghost) resources (as par-
tial commutative monoids), and has been successfully used
to derive and implement many different formal systems.
Although Iris is an unifying and expressive framework,
deductive reasoning and expertise are required.

3As Cutsem et al. [10] point out, “the use of event loops avoids low-level data races
that are inherent in the shared-memory multithreading paradigm”.
4https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html

(2) There is some work on capabilities which distinguish be-
tween thread-local from thread-shared data [8, 9, 45], but
the set of available capabilities is fixed and there are limita-
tions to how data may be transferred between threads. In
Iris, it is possible to encode “thread-local invariants” which
can be opened non-atomically [21], but doing the encoding
is non-trivial and requires expert users.

(3) Recent logics have preferred to use affine resources, such
as Iris, which do not allow the precise tracking of resources.
However, there is now some work extending Iris with linear
resources [23], or even both kinds [7, 25]. Unfortunately,
this is only available in the deductive logics realm.

3 RESEARCH STATEMENT
Our main objective for the PhD thesis is to:

Design a typed core OO language supporting shared
mutable state and objects protocols, with memory and
thread-safety, protocol compliance and completion.

The core language should provide modern features, support pro-
tocols, and reason about shared mutable state. Safe programs
should be memory-safe (i.e. no null dereferencing, dangling point-
ers or memory leaks) and thread-safe (i.e. no low-level data-races).
Moreover, safe programs should respect all objects protocols (proto-
col compliance) and ensure that upon termination all protocols are
finished (protocol completion). The former is crucial to ensure that
methods are executed in the right sequence. The latter is critical
to guarantee that necessary method calls are not forgotten and
resources are freed. To fulfil this goal, we plan the following.

Formalise the language semantics supporting modern fea-
tures, like aliasing, mutable state, locks, dynamic thread creation
(with fork and join), and asynchronous code (enabled by each
thread having an event loop, inspired by AmbientTalk [10] and
JavaScript [34, 39]), in the Coq proof assistant [3].

Develop a type system framework parametric over separation
algebras [6], allowing more expressive ways to reason about shared
data. Taking inspiration from Iris [24], we want to ease the creation
of new type systems, without requiring one to repeat soundness
proofs: one just needs to instantiate the framework with the right
sharing capabilities. We plan to mechanise the solution in the Coq
proof assistant [3], using computer-aided proofs to establish the
soundness of the approach.With this type system based approach, we
believe we provide a much needed balance between expressiveness
and ease of use while providing an unifying framework from which
more works can be developed, to avoid adding to “the next 700
type systems” [35]. The technical novelties would include the ability
to distinguish between thread-local and thread-shared resources,
and between affine and linear ones. Moreover, we will develop a
decidable algorithm from the rules of the resulting type system.

Evaluate the approach by applying the principles in main-
stream languages, like TypeScript or Java. JaTyC [2, 32], a Java
typestate-checking tool, has been our test ambient. It statically
ensures memory-safety, protocol compliance and completion. How-
ever, objects must be used linearly. To support flexible sharing, we
also plan to develop an integration of typestates with particular sep-
aration algebras, such as access permissions [5] and rely-guarantee
protocols [30], thus going beyond the state of the art.
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