
Coping with shared mutable state in a typestate-oriented concurrent language
João Mota - jd.mota@campus.fct.unl.pt

(1) CONTEXT: SAFETY IS KEY (2) PROBLEM: HOW TO DEAL WITH
SHARED MUTABLE STATE?
Type systems to deal with protocols and shared mutable
state in languages with modern features are lacking.

Issue 1 : Sharing patterns are limited to f ixed sets of
capabil it ies or certain ownership discipl ines.
Issue 2: No distinction between thread-local and thread-
shared data, forcing locks usage even in sequential code.
Issue 3: No protocol completion when objects are shared
(because affinity has been preferred).

(4) GOAL: SAFE SHARED STATE IN A
TYPESTATE-ORIENTED LANGUAGE

Design a typed core OO language to reason about
shared mutable state and objects protocols ,

guaranteeing memory-safety and thread-safety ,
protocol compliance and completion .

Solution components:
• Overcome sharing l imitations to reason about

cooperation protocols.
• Support single-threaded asynchronous code , which

does not require locks.
• Guarantee protocol completion .

RQ: What if we also wanted to support multi -threading?
RQ: What if we also wanted droppable states?

“Create another type system?”

Avoid “the next 700 type systems”

1 . Develop a type system framework parametric
over suitable separation algebras , al lowing more
expressive ways to reason about shared data.
Inspired in Iris .

2. Final product
• Integrate typestates with separation algebras:

access permissions and rely-guarantee protocols .
• Shareable typestate based type checker for

TypeScript and Java.

Type system framework

Language
semantics

Type system
rules

Separation algebras
{ Σ, ⊑,∘, 𝜀 , …}

Sound type system

ACKNOWLEDGMENTS

This work was partially supported by NOVA LINCS (UIDB/04516/2020)
via FCT (doi:10.54499/2021.05297.BD)

A Ph.D. Thesis Plan presented at PLDI@SRC 2024

Studies … found that about 70 percent of all security
vulnerabilities are … memory safety issues - InfoWorld, 2024

Future Software Should Be Memory Safe - White House, 2024

JaTyC (Java Typestate Checker) analyses Java code with
respect to typestates (i .e . , object protocols). Statically
detects violations of:
• protocol compliance: method calls are in order
• protocol completion: protocols reach the “end” state
• memory-safety: no null deref. , no data-races, no leaks
But forces l inear use of objects…

JavaScript code example features:
1 . Complex cooperation : producer adds items, consumer

receives them and completes the protocols.
2. Single-threaded asynchronous code (i .e. , concurrency

without parallel ism from event loops).

Mainstream languages do not give the desired guarantees .
Static typestated approaches do not accept this code :
1 . Limited sharing prevents using the queue
2. Asynchronous code is not supported
and do not guarantee protocol completion .

Protocol example for a File Reader

(3) MOTIVATING EXAMPLE:
ASYNC. COOPERATION PROTOCOL

Novelties to type -check
the example:

• al low to dist inguish between
thread-local and thread-

shared resources, and between
aff ine and l inear ones.

• al low to temporari ly break
assumptions made by thread-
local resources unti l y ielding

back to the event loop.

const queue = new Queue();

async function producer() {
const data = await otherTask1();
// Mistake: consumer may have finished at this point
// queue.use();
queue.add(data);
queue.unuse();

}

async function consumer() {
while (queue.inUse()) {
const data = await queue.take();
await otherTask2(data);

}
}

queue.use(); // Correct: claim use before starting
await Promise.all([producer(), consumer()]);

