Coping with shared mutable state in a typestate-oriented concurrent language

Joao Mota - jad.mota@campus.fct.unl pt

A Ph.D. Thesis Plan presented at PLDI@SRC 2024

(2) PROBLEM: HOW TO DEAL WITH

_ -5
Studies ... found that about 70 percent of all security SHARED MUTABLE STATE

vulnerabilities are ... memory safety issues -InfoWorld, 2024 Type systems to deal with protocols and shared mutable

state in languages with modern features are lacking.

(1) CONTEXT: SAFETY [S KEY

Future Software Should Be Memory Safe - White House, 2024

ssue I: Sharing patterns are limited to fixed sets of
capabilities or certain ownership disciplines.

ssue 2: No distinction between thread-local and thread-
shared data, forcing locks usage even in sequential code.

ssue 3: No protocol completion when objects are sharec
(because affinity has been preferred).

JaTyC (Java Typestate Checker) analyses Java code with
respect to typestates [i.e., object protocols). Statically
detects violations of:

« protocol compliance: method calls are in order

* protocol completion: protocols reach the "end” state

 memory-safety: no null deref., no data-races, no leaks

But forces linear use of objects..

(3) MOTIVATING EXAMPLE:
ASYNC. COOPERATION PROTOCOL

JavaScript code example features:
| 1. Complex cooperation: producer adds items, consumer
B Protocol example for a File Reader .
Read) receives them and completes the protocols.
- 2.Single-threaded asynchronous code (i.e., concurrency
without parallelism from event loops).

__open() _____AInit

(4) GOAL: SAFE SHARED STATE IN A
YPESTATE-ORIENTED LANGUAGE

const queue = new Queue();

async function producer() {
const data = await otherTaskl();

Design a typed core 00 language to reason about
shared mutable state and objects protocols,
ouaranteeing memory-safety and thread-safety,
protocol compliance and completion.

Solution components:

e (Overcome sharing limitations to reason about
cooperation protocols.

e Support single-threaded asynchronous code, which

// Mistake: consumer may have finished at this point
// queue.use();

queue.add(data);

queue.unuse();

¥

async function consumer() {
while (queue.inUse()) {
const data = await queue.take();
await otherTask2(data);

¥

does not require locks. b
e (Guarantee protocol completion.

queue.use(); // Correct: claim use before starting

y | | await Promise.all([producer(), consumer()]1);
RO: What if we also wanted to support multi-threading?

What if we also wanted droppable states?

Mainstream languages do not give the desired guarantees.
Static typestated approaches do not accept this code:
‘Lreate another type system?” |, Limited sharing prevents using the queue

2. Asynchronous code is not supportec
and do not guarantee protocol completion.

Avoid “the next 700 type systems”

1. Develop a type system framework parametric
over suitable separation algebras, allowing more
expressive ways to reason about shared data.
Inspired in Iris.

Novelties to type-check Separation algebras
the example: e” (X, E)o,¢),...}
* allow to distinguish between
thread-local and thread-
shared resources, and between

Type system frameworR
affine and linear ones.
* allow to temporarily break

Language Type system
semantics rules
assumptions made by thread-

local resources until yielding S

back to the event loop. Sound type system

NOVALINCS Fundacio ACKNOWLEDGMENTS
L ABORATORY FOR COMPUTER FC I efﬂf&fﬂ;ﬁ This work was partially supported by NOVA LINCS (UIDB/04516/2020)

SCIENCE AND INFORMATICS via FCT (doi: 10.54499/2021.05297. BD)

2. Final product
* Integrate {ypestates with separation algebras:
access permissions and rely-guarantee protocols.
e Shareable typestate based type checker for
TypeScript and Java.

N v NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

