
Java Typestate Checker
Lorenzo Bacchiani1, Mario Bravetti1, Marco Giunti2, João Mota2, António Ravara2

1 University of Bologna, Italy
2 NOVA LINCS and NOVA School of Science and Technology, Portugal

Protocols are common

● Example: MBWay
● Payment flow:

○ Choose MBWay and enter the mobile phone number…

2

Protocols are common

● Example: MBWay
● Payment flow:

○ The payment reference is generated…

3

Protocols are common

● Example: MBWay
● Payment flow:

○ The order notification is sent to the MBWay app…

4

Protocols are common

● Example: MBWay
● Payment flow:

○ Confirm the payment in the MBWay app…

5

Protocols are common

● Example: MBWay
● Payment flow:

○ Payment is successful!

6

Development is hard

https://github.com/xetorthio/jedis/issues/1747

Reading socket in a “broken” state causes exception…

One should first check the current state of the socket before reading. 7

https://github.com/xetorthio/jedis/issues/1747

Development is hardDevelopment is hard

8

Development is hard

December 2, 2021:

Really Stupid 'Smart Contract' Bug Let Hackers Steal $31 Million In Digital Coin

User could send tokens to themselves and increase their balance!

Someone forgot an if statement: tokenIn != tokenOut

Only incompetent programmers do this, right?

9

https://it.slashdot.org/story/21/12/02/216216/really-stupid-smart-contract-bug-let-hackers-steal-31-million-in-digital-coin

What to do?

“Program testing can be used to show the presence of bugs, but never
to show their absence!”

Edsger W. Dijkstra

Turing award in 1972: “The humble programmer”

“If you want more effective programmers, you will discover that they should not
waste their time debugging, they should not introduce the bugs to start with.”

10

https://amturing.acm.org/award_winners/dijkstra_1053701.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283927&type=pdf

What to do?

The verified software initiative

C.A.R. Hoare*, Jayadev Misra, Gary T. Leavens, and Natarajan Shankar

*Turing award in 1980: “The Emperor's Old Clothes”

The opening of the Manifesto: “We propose an ambitious and long-term research
program toward the construction of error-free software systems.”

Science fiction?

11

https://amturing.acm.org/award_winners/hoare_4622167.cfm
https://dl.acm.org/ft_gateway.cfm?id=1283936&type=pdf
https://dl.acm.org/doi/10.1145/1592434.1592439

What to do?

Google announces KataOS
October 14, 2022 on Google Open Source Blog

“a provably secure platform that's optimized for embedded devices that run ML
applications.”

Based on Rust, on top of seL4:

● Rust: compile-time memory and thread safety
(no null-deref, use-after-free, double-free; no races)

● seL4: “The world's most highly assured OS kernel.”

12

https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://www.rust-lang.org/
https://sel4.systems/

The issue

Detecting errors and vulnerabilities in software is crucial for the industry.

It is not enough to rule out data-errors (i.e. if types are compatible).

We also need the behavior of programs to be correct!

13

Marketplace Smart Contract

Example from Microsoft Azure’s GitHub:
github.com/Azure-Samples/blockchain

● Protocols are usually described:
○ in natural languages;
○ or drawn as state machines;

● Code requires defensive programming
to check the current state.

function AcceptOffer() public {
 if (msg.sender != InstanceOwner) { revert(); }
 State = StateType.Accepted;
}

Very prone to bugs: AcceptOffer does not check the state!

14

Java Typestate Checker

● Statically checks Java code where objects are associated with typestates;
● Typestates describe the methods available in each protocol state;
● Built on top of the Checker Framework.
● Guarantees:

○ Protocol compliance;
○ Protocol completion (assuming that program terminates);
○ Null pointer exception absence;
○ Subclasses' instances respect the protocol of their superclasses.

github.com/jdmota/java-typestate-checker

15

https://github.com/jdmota/java-typestate-checker

16

Reimplementation of Mungo: www.dcs.gla.ac.uk/research/mungo/

Comparison table: github.com/jdmota/java-typestate-checker/wiki/Mungo-comparison

Deterministic Object Automata

Simple file reader protocol’s happy-path:

open() returning OK
read()
close()

17

typestate-editor.github.io

Typestate vs Deterministic Object Automata

typestate FileProtocol {

 Init = {

 FileStatus open(): <OK: Read, ERROR: end>

 }

 Read = {

 String read(): Close

 }

 Close = {

 void close(): end

 }

}

18

typestate-editor.github.io

Protocol compliance

 File f = new File();

 System.out.println(f.read());

 // error: Cannot call [read] on State{File, Init}

19

Protocol compliance

 File f = new File();

 switch (f.open()) {

 case OK:

 System.out.println(f.read());

 break;

 case ERROR:

 break;

 }

20

Protocol completion

 File f = new File();

 switch (f.open()) {

 case OK:

 System.out.println(f.read());

 break;

 case ERROR:

 break;

 }

 // error: [f] did not complete its protocol

 (found: State{File, Close} | State{File, end})

21

Protocol compliance & completion

 File f = new File();

 switch (f.open()) {

 case OK:

 System.out.println(f.read());

 f.close();

 break;

 case ERROR:

 break;

 }

 // OK!

22

Line Reader

Protocol’s happy-path:

open() returning OK
read() while !eof()
close()

The LineReader uses java.io.FileReader internally.

To better check its implementation, we can associate a
protocol with java.io.FileReader as well!

23

Protocols for library classes

java.lang.AutoCloseable=AutoCloseable.protocol
java.io.Reader=Reader.protocol

Since java.io.FileReader extends java.io.Reader (which implements java.lang.AutoCloseable),
it will inherit the protocol of java.io.Reader

typestate Reader {

 Read = {

 int read(): Read,

 void close(): end

 }

}

typestate AutoCloseable {

 Closeable = {

 void close(): end

 }

}

Configuration file

24

Line Reader
 @Typestate("LineReader")

 public class LineReader {

 private @Nullable FileReader file;

 private int curr;

 public Status open(String filename) {

 /* ... */

 curr = 0; /* ... */

 }

 public String read() {

 /* ... */ curr = file.read(); /* ... */

 }

 public boolean eof() { return curr == -1; }

 public void close() {}

 }

25

Line Reader
 @Typestate("LineReader")

 public class LineReader {

 private @Nullable FileReader file;

 private int curr;

 public Status open(String filename) {

 /* ... */

 curr = 0; /* ... */

 }

 public String read() {

 /* ... */ curr = file.read(); /* ... */

 // error: Cannot call read on null

 }

 public boolean eof() { return curr == -1; }

 public void close() {}

 }

26

Line Reader
 @Typestate("LineReader")

 public class LineReader {

 private @Nullable FileReader file;

 private int curr;

 public Status open(String filename) {

 /* ... */

 file = new FileReader(filename);

 curr = file.read(); /* ... */

 }

 public String read() {

 /* ... */ curr = file.read(); /* ... */

 }

 public boolean eof() { return curr == -1; }

 public void close() {}

 }

27

Line Reader
 @Typestate("LineReader")

 public class LineReader {

 // error: [this.file] did not complete its protocol

 private @Nullable FileReader file;

 private int curr;

 public Status open(String filename) {

 /* ... */

 file = new FileReader(filename);

 curr = file.read(); /* ... */

 }

 public String read() {

 /* ... */ curr = file.read(); /* ... */

 }

 public boolean eof() { return curr == -1; }

 public void close() {}

 }

28

Line Reader
 @Typestate("LineReader")

 public class LineReader {

 private @Nullable FileReader file;

 private int curr;

 public Status open(String filename) {

 /* ... */

 file = new FileReader(filename);

 curr = file.read(); /* ... */

 }

 public String read() {

 /* ... */ curr = file.read(); /* ... */

 }

 public boolean eof() { return curr == -1; }

 public void close() { file.close(); }

 }

29

Droppable states

● One can mark other states as final with the special drop:end transition;
● For example, the HasNext state is final.

 typestate Iterator {

 HasNext = {

 boolean hasNext(): <true: Next, false: end>,

 drop: end

 }

 Next = {

 Object next(): HasNext

 }

 }

30

Digital Locker

From Azure-Samples: The Digital Locker application expresses a workflow of sharing
digitally locked files where the owner of the files controls the access to these files.

Roles:

● Owner: The owner of the digital asset.
● BankAgent: The keeper of the digital asset.
● ThirdPartyRequestor: A person requesting access to the digital asset.

github.com/Azure-Samples/blockchain

31

Digital Locker

From Azure-Samples: The Digital Locker application expresses a workflow of sharing
digitally locked files where the owner of the files controls the access to these files.

States:

● Requested: Initial state;
● DocumentReview: The bank agent has reviewed the owner's request;
● AvailableToShare: The bank agent has uploaded the digital asset and the digital asset

is available for sharing;
● SharingRequestPending: The owner is reviewing a third party's request to access the

digital asset;
● SharingWithThirdParty: The third party is accessing the asset.

32

Digital Locker

33

Digital Locker: ThirdPartyRequestor
typestate ThirdPartyRequestor {

 Init = {

 void await(): AvailableToShare

 }

 AvailableToShare = {

 SharingState requestAccess():

 <PENDING: SharingRequestPending,

 SHARING: SharingWithThirdParty, TERMINATED: end>,

 drop: end

 }

 SharingRequestPending = {

 OwnerResponse awaitResponse():

 <ACCEPT: SharingWithThirdParty,

 REJECT: AvailableToShare, TERMINATED: end>

 }

 SharingWithThirdParty = {

 void releaseAccess(): AvailableToShare

 }

} 34

Digital Locker: ThirdPartyRequestor
 ThirdPartyRequestor t = new ThirdPartyRequestor();

 t.await();

 loop: while (true) {

 switch (t.requestAccess()) {

 case PENDING:

 switch (t.awaitResponse()) {

 case REJECT:

 case TERMINATED:

 break;

 case ACCEPT:

 }

 case SHARING:

 t.releaseAccess();

 break;

 case TERMINATED:

 return;

 }

 } 35

Digital Locker: ThirdPartyRequestor
 ThirdPartyRequestor t = new ThirdPartyRequestor();

 t.await();

 loop: while (true) {

 switch (t.requestAccess()) {

 case PENDING:

 switch (t.awaitResponse()) {

 case REJECT:

 case TERMINATED:

 break;

 case ACCEPT:

 }

 case SHARING:

 t.releaseAccess(); // Cannot call [releaseAccess] on SharingWithThirdParty | end

 break;

 case TERMINATED:

 return;

 }

 } 36

Digital Locker: ThirdPartyRequestor
 ThirdPartyRequestor t = new ThirdPartyRequestor();

 t.await();

 loop: while (true) {

 switch (t.requestAccess()) {

 case PENDING:

 switch (t.awaitResponse()) {

 case REJECT:

 case TERMINATED:

 break loop;

 case ACCEPT:

 }

 case SHARING:

 t.releaseAccess(); // OK

 break;

 case TERMINATED:

 return;

 }

 } 37

Subtyping

● We leverage on the synchronous subtyping algorithm for
session types by Gay and Hole.

● One can check if one session type is a subtype of another using
the Session Subtyping Tool: Lorenzo Bacchiani, Mario Bravetti,
Julien Lange, and Gianluigi Zavattaro (2021).

38

github.com/LBacchiani/session-subtyping-tool

Bulb

typestate Bulb {

 DISCONN = {

 boolean connect(): <true: CONN, false: DISCONN>,

 drop: end

 }

 CONN = {

 void disconnect(): DISCONN,

 void setBrightness(int): CONN

 }

}

39

FunnyBulb
typestate FunnyBulb {

 DISCONN = {

 boolean connect(): <true: STD_CONN, false: DISCONN>,

 drop: end

 }

 STD_CONN = {

 void disconnect(): DISCONN,

 void setBrightness(int): STD_CONN,

 Mode switchMode(): <RND: RND_CONN, STD: STD_CONN>,

 void setColor(String): STD_CONN

 }

 RND_CONN = {

 void disconnect(): DISCONN,

 void setBrightness(int): RND_CONN,

 Mode switchMode(): <RND: RND_CONN, STD: STD_CONN>,

 void randomColor(): RND_CONN

 }

} 40

FunnyBulb extends Bulb

github.com/LBacchiani/session-subtyping-tool 41

FunnyBulb extends Bulb

github.com/LBacchiani/session-subtyping-tool

Note: We can execute Gay and
Hole’s algorithm on any pair of
states to check for subtyping. To
check class compatibility, we run
the algorithm on the initial states,
as seen in the image.

42

Polymorphic code
import jatyc.lib.Requires;

public class ClientCode {

 public static void example() {

 FunnyBulb f = new FunnyBulb(); // DISCONN

 while (!f.connect()) {} // STD_CONN

 f.switchMode(); // STD_CONN | RND_CONN

 setBrightness(f);

 }

 private static void setBrightness(@Requires("CONN") Bulb b) {

 if (b instanceof FunnyBulb && ((FunnyBulb) b).switchMode() == Mode.RND) {

 ((FunnyBulb) b).randomColor(); // RND_CONN

 }

 b.setBrightness(10); // CONN

 b.disconnect(); // end

 }

} 43

Limitations & Future work

● Objects with protocol must be used in a linear way;
● No overall support for generics;
● No support for dealing with state changes in the presence of exceptions;
● No support for multiple inheritance;
● No functional verification.

github.com/jdmota/java-typestate-checker

44

https://github.com/jdmota/java-typestate-checker

Conclusion

● API’s naturally have protocols;
● Traditional type systems do not verify protocols requiring:

○ Defensive programming;
○ The programmer imagining the protocol;

● Solution: associate a protocol with the type of the objects;
● JaTyC statically ensures:

○ Protocol compliance and completion;
○ Null pointer exception absence;
○ Subclasses' instances respect the protocol of their superclasses.

github.com/jdmota/java-typestate-checker

45

https://github.com/jdmota/java-typestate-checker

Thank you!

Any questions?

github.com/jdmota/java-typestate-checker

46

https://github.com/jdmota/java-typestate-checker

